fft#
-
nvmath.
device. fft(*, compiler=None, **kwargs)[source]# Create an
FFTOptions
object that encapsulates a compiled and ready-to-use FFT device function.- Parameters:
size (int) – The size of the FFT to calculate.
precision (str) – The computation precision specified as a numpy float dtype, currently supports
numpy.float16
,numpy.float32
andnumpy.float64
.fft_type (str) – A string specifying the type of FFT operation, can be
'c2c'
,'c2r'
or'r2c'
.compiler (str) – A string to specify the compiler for the device code, currently supports
None
(default) and'Numba'
code_type (CodeType) – The target GPU code and compute-capability.. Optional if compiler is specified as
'Numba'
.execution (str) – A string specifying the execution method, can be
'Block'
or'Thread'
.direction (str) – A string specifying the direction of FFT, can be
'forward'
or'inverse'
. If not provided, will be'forward'
if complex-to-real FFT is specified and'inverse'
if real-to-complex FFT is specified.ffts_per_block (int) – The number of FFTs calculated per CUDA block, optional. The default is 1. Alternatively, if provided as
'suggested'
, will be set to a suggested valueelements_per_thread (int) – The number of elements per thread, optional. The default is 1. Alternatively, if provided as
'suggested'
, will be set to a suggested value.real_fft_options (dict) –
A dictionary specifying the options for real FFT operation, optional. User may specify the following options in the dictionary:
'complex_layout'
, currently supports'natural'
,'packed'
, and'full'
.'real_mode'
, currently supports'normal'
and'folded'
.
See also
The attributes of
FFTOptions
provide a 1:1 mapping with the CUDA C++ cuFFTDx APIs. For further details, please refer to cuFFTDx documentation.Examples
Examples can be found in the nvmath/examples/device directory.