matmul#
-
nvmath.
device. matmul(*, compiler=None, **kwargs)[source]# Create an
BlasOptions
object that encapsulates a compiled and ready-to-use device function for matrix multiplication.- Parameters:
size – A sequence of integers denoting the three dimensions
(m, n, k)
for the matrix multiplication problem.precision – The computation precision specified as a numpy float dtype, currently supports
numpy.float16
,numpy.float32
andnumpy.float64
.data_type – The data type of the input matrices, can be either
'real'
or'complex'
.compiler – A string to specify the compiler for the device code, currently supports
None
(default) and'Numba'
code_type (CodeType) – The target GPU code and compute-capability.
block_size (int) – The total block size, optional. If not provided or set to
'suggested'
, will be set to a suggested value for 1D block dim.block_dim (Dim3) – The block dimension for launching the CUDA kernel, optional. If not provided or set to
'suggested'
, will be set to a suggested value. Can’t not be used whenblock_size
is explicitly specified.leading_dimension (LeadingDimension) – The leading dimensions for the input matrices, optional. If not provided, will be set to match the matrix row/column dimension. Alternatively, if provided as
'suggested'
, will be set to a suggested value for optimal performance.transpose_mode (TransposeMode) – The transpose mode for all input matrices. If not provided, no transposition by default.
function (str) – A string specifying the name of the function. Currently supports
'MM'
(default) for matrix multiplication.execution (str) – A string specifying the execution method, can be
'Block'
or'Thread'
.
See also
The attributes of
BlasOptions
provide a 1:1 mapping with the CUDA C++ cuBLASDx APIs. For further details, please refer to cuBLASDx documentation.Examples
>>> from numba import cuda >>> from nvmath.device import matmul >>> import numpy as np >>> m, n, k = 32, 16, 64 >>> block_size = 256
Use
nvmath.
to create the compiled matrix multiplication object:device. matmul() >>> MM = matmul(size=(m, n, k), precision=np.float32, data_type='real', transpose_mode=('non_transposed', 'transposed'), ... execution='Block', block_size=block_size, compiler='numba')
Pass
link=MM.files
to thenumba.cuda.jit
decorator when defining your kernel to link with the compiled code.cuBLASDx works on shared memory arrays. It requires column-major (F order) arrays but
cuda.shared.array
creates row-major (C order) arrays only. You can emulate a column-major array by flipping dimensions. With your shared memory arrays ready and filled with actual data, you can run the matrix multiplication by callingMM
>>> a_dim, b_dim, c_dim = MM.a_dim, MM.b_dim, MM.c_dim >>> @cuda.jit(link=MM.files) ... def f(): ... a = cuda.shared.array(shape=(a_dim[1], a_dim[0]), dtype=np.float32) ... b = cuda.shared.array(shape=(b_dim[1], b_dim[0]), dtype=np.float32) ... c = cuda.shared.array(shape=(c_dim[1], c_dim[0]), dtype=np.float32) ... # TODO: Populate the arrays with actual data. ... alpha, beta = 1., 0. ... MM(alpha, a, b, beta, c) ... cuda.syncthreads() ... # TODO: Copy the result (c) from the shared memory >>> f[1, block_size]()
Further examples can be found in the nvmath/examples/device directory.