Basic Audit Target#
When you run an audit job in NVIDIA NeMo Auditor, you create a separate audit target and audit configuration for the job.
The target specifies the model name, model type, and free-form key-value pairs for model-specific inference options.
Schema for Audit Targets#
Field |
Description |
Default Value |
---|---|---|
|
Specifies the name of the audit target. Names must be unique within a namespace. The maximum length is 250 characters. |
None (Required) |
|
Specifies the namespace for the audit target. The maximum length is 250 characters. |
None (Required) |
|
Specifies a dictionary of model-specific inference options.
Specify the The following sample JSON is valid when "options": {
"nim": {
"context_len": null,
"extra_params": {},
"frequency_penalty": 0.0,
"max_tokens": 150,
"presence_penalty": 0.0,
"retry_json": true,
"seed": null,
"skip_seq_end": null,
"skip_seq_start": null,
"stop": ["#", ";"],
"suppressed_params": [
"frequency_penalty",
"n",
"presence_penalty",
"timeout"
],
"temperature": 0.1,
"top_k": 0,
"top_p": 0.7,
"uri": "https://integrate.api.nvidia.com/v1/",
"vary_seed_each_call": true,
"vary_temp_each_call": true
}
}
To access models from NeMo NIM Proxy, set the service name as the "generator_config": {
"nim": {
"uri": "http://nemo-nim-proxy:8000/v1/"
}
}
|
Refer to the |
|
Specifies the model to audit, such as |
None (Required) |
|
Specifies the type of model to audit. These correspond to a garak generator. The microservice supports a subset of the generators that garak supports. Specify one of the following generators:
|
None (Required) |
The following target references the NVIDIA Llama 3.1 Nemotron Nano V1 8B model from a locally-accessible NIM microservice.
The service name for the LLM container is llm
.
Set AUDITOR_BASE_URL
to specify the service:
$ export AUDITOR_BASE_URL=http://localhost:5000
import os
from nemo_microservices import NeMoMicroservices
client = NeMoMicroservices(base_url=os.getenv("AUDITOR_BASE_URL"))
target = client.beta.audit.targets.create(
namespace="default",
name="demo-basic-target",
type="nim.NVOpenAIChat",
model="deepseek-ai/deepseek-r1-distill-llama-8b",
options={
"nim": {
"skip_seq_start": "<think>",
"skip_seq_end": "</think>",
"max_tokens": 3200,
"uri": "http://llm:8000/v1/"
}
}
)
print(target)
curl -X POST "${AUDITOR_BASE_URL}/v1beta1/audit/targets" \
-H "Accept: application/json" \
-H "Content-Type: application/json" \
-d '{
"namespace": "default",
"name": "demo-basic-target",
"type": "nim.NVOpenAIChat",
"model": "deepseek-ai/deepseek-r1-distill-llama-8b",
"options": {
"nim": {
"skip_seq_start": "<think>",
"skip_seq_end": "</think>",
"max_tokens": 3200,
"uri": "http://llm:8000/v1/"
}
}
}' | jq