Agentic Evaluation Types#
Agentic evaluation types assess the performance of agent-based or multi-step reasoning models, especially in scenarios requiring planning, tool use, and iterative reasoning.
Prerequisites#
Before running Agentic evaluations, ensure you have:
Dataset Requirements:
Uploaded your dataset to NeMo Data Store using Hugging Face CLI or SDK (for custom datasets)
Registered your dataset in NeMo Entity Store using the Dataset APIs (for custom datasets)
Set up or selected an existing
cached_outputs
evaluation targetFormatted your data with cached outputs (pre-generated model responses)
Model Configuration:
Judge LLM configured for evaluation metrics (required for most agentic tasks - Tool Call Accuracy is the exception)
Proper task-specific data fields (varies by agentic task type)
Tip
For a complete dataset creation walkthrough, see the dataset management tutorials or follow the end-to-end evaluation example.
Note
Performance Tuning: You can improve evaluation performance by setting config.params.parallelism
to control the number of concurrent requests. A typical default value is 16, but you may need to adjust based on your model’s capacity and rate limits.
Option |
Use Case |
Data Format |
Example |
---|---|---|---|
Topic Adherence |
Measures topic focus in multi-turn conversations |
user_input, reference_topics |
“Is the agent’s answer about ‘technology’?” |
Tool Call Accuracy |
Evaluates tool/function call correctness |
user_input (with tool_calls) |
“Did the agent call the restaurant booking tool with correct args?” |
Agent Goal Accuracy with Reference |
Assesses goal completion with reference |
user_input, response, reference |
“Did the agent book a table as requested?” |
Agent Goal Accuracy without Reference |
Assesses goal completion without reference |
user_input, response |
“Did the agent complete the requested task?” |
Answer Accuracy |
Checks factual correctness |
user_input, response, reference |
“Did the agent answer ‘Paris’ for ‘What is the capital of France’?” |
Options#
Topic Adherence#
Topic Adherence requires judge model.
{
"type": "agentic",
"name": "my-agentic-config-topic-adherence",
"namespace": "my-organization",
"params": {
"parallelism": 16
},
"tasks": {
"task1": {
"type": "topic_adherence",
"params": {
"metric_mode": "f1",
"judge": {
"model": {
"api_endpoint": {
"url": "<nim_url>",
"model_id": "meta/llama-3.1-70b-instruct",
"api_key": "<OPTIONAL_JUDGE_API_KEY>"
},
"prompt": {
"inference_params": {
"temperature": 0.1,
"max_tokens": 1024,
"max_retries": 10,
"request_timeout": 10
}
}
},
"extra": {
"judge_sanity_check": true
}
}
}
}
}
}
{
"type": "agentic",
"name": "my-agentic-config-topic-adherence-reasoning",
"namespace": "my-organization",
"params": {
"parallelism": 16
},
"tasks": {
"task1": {
"type": "topic_adherence",
"params": {
"metric_mode": "f1",
"judge": {
"model": {
"api_endpoint": {
"url": "<nim_url>",
"model_id": "nvidia/llama-3.3-nemotron-super-49b-v1",
"api_key": "<OPTIONAL_JUDGE_API_KEY>"
},
"prompt": {
"system_prompt": "'detailed thinking on'",
"reasoning_params": {
"end_token": "</think>"
},
"inference_params": {
"temperature": 0.1,
"max_tokens": 1024,
"max_retries": 10,
"request_timeout": 10
}
}
}
}
}
}
}
}
{
"user_input": [
{"content": "how to keep healthy?", "type": "human"},
{"content": "Sure. Eat more fruit", "type": "ai"}
],
"reference_topics": ["technology"]
}
{
"tasks": {
"task1": {
"metrics": {
"topic_adherence(mode=f1)": {
"scores": {
"topic_adherence(mode=f1)": {
"value": 0.53
}
}
}
}
}
}
}
Agent Goal Accuracy with Reference#
Agent goal accuracy requires judge model.
{
"type": "agentic",
"name": "my-agentic-config-goal-accuracy",
"namespace": "my-organization",
"tasks": {
"task1": {
"type": "goal_accuracy_with_reference",
"params": {
"judge": {
"model": {
"api_endpoint": {
"url": "<nim_url>",
"model_id": "meta/llama-3.3-70b-instruct",
"api_key": "<OPTIONAL_JUDGE_API_KEY>"
},
"prompt": {
"inference_params": {
"max_tokens": 1024,
"max_retries": 10,
"request_timeout": 10,
"temperature": 0.1
}
}
}
}
}
}
}
}
{
"type": "agentic",
"name": "my-agentic-config-goal-accuracy-reasoning",
"namespace": "my-organization",
"tasks": {
"task1": {
"type": "goal_accuracy_with_reference",
"params": {
"judge": {
"model": {
"api_endpoint": {
"url": "<nim_url>",
"model_id": "nvidia/llama-3.3-nemotron-super-49b-v1",
"api_key": "<OPTIONAL_JUDGE_API_KEY>"
},
"prompt": {
"system_prompt": "'detailed thinking on'",
"reasoning_params": {
"end_token": "</think>"
},
"inference_params": {
"max_tokens": 1024,
"max_retries": 10,
"request_timeout": 10,
"temperature": 0.1
}
}
}
}
}
}
}
}
{
"user_input": [
{ "content": "Hey, book a table at the nearest best Chinese restaurant for 8:00pm", "type": "user" },
{ "content": "Sure, let me find the best options for you.", "type": "assistant", "tool_calls": [ { "name": "restaurant_search", "args": { "cuisine": "Chinese", "time": "8:00pm" } } ] },
{ "content": "Found a few options: 1. Golden Dragon, 2. Jade Palace", "type": "tool" },
{ "content": "I found some great options: Golden Dragon and Jade Palace. Which one would you prefer?", "type": "assistant" },
{ "content": "Let's go with Golden Dragon.", "type": "user" },
{ "content": "Great choice! I'll book a table for 8:00pm at Golden Dragon.", "type": "assistant", "tool_calls": [ { "name": "restaurant_book", "args": { "name": "Golden Dragon", "time": "8:00pm" } } ] },
{ "content": "Table booked at Golden Dragon for 8:00pm.", "type": "tool" },
{ "content": "Your table at Golden Dragon is booked for 8:00pm. Enjoy your meal!", "type": "assistant" },
{ "content": "thanks", "type": "user" }
],
"reference": "Table booked at one of the chinese restaurants at 8 pm"
}
{
"tasks": {
"task1": {
"metrics": {
"agent_goal_accuracy": {
"scores": {
"agent_goal_accuracy": {
"value": 1.0
}
}
}
}
}
}
}
Agent Goal Accuracy without Reference#
Agent goal accuracy without reference requires judge model.
{
"type": "agentic",
"name": "my-agentic-config-goal-accuracy-no-ref",
"namespace": "my-organization",
"tasks": {
"task1": {
"type": "goal_accuracy_without_reference",
"params": {
"judge": {
"model": {
"api_endpoint": {
"url": "<nim_url>",
"model_id": "meta/llama-3.3-70b-instruct",
"api_key": "<OPTIONAL_JUDGE_API_KEY>"
},
"prompt": {
"inference_params": {
"max_tokens": 1024,
"max_retries": 10,
"request_timeout": 10,
"temperature": 0.1
}
}
}
}
}
}
}
}
{
"user_input": [
{ "content": "Set a reminder for my dentist appointment tomorrow at 2pm", "type": "user" },
{ "content": "I'll set that reminder for you.", "type": "assistant", "tool_calls": [ { "name": "set_reminder", "args": { "title": "Dentist appointment", "date": "tomorrow", "time": "2pm" } } ] },
{ "content": "Reminder set successfully.", "type": "tool" },
{ "content": "Your reminder for the dentist appointment tomorrow at 2pm has been set.", "type": "assistant" }
]
}
{
"tasks": {
"task1": {
"metrics": {
"agent_goal_accuracy": {
"scores": {
"agent_goal_accuracy": {
"value": 1.0
}
}
}
}
}
}
}
Tool Call Accuracy#
{
"type": "agentic",
"name": "my-agentic-config-tool-call-accuracy",
"namespace": "my-organization",
"tasks": {
"task1": {
"type": "tool_call_accuracy"
}
}
}
{
"user_input": [
{"content": "What's the weather like in New York right now?", "type": "human"},
{"content": "The current temperature in New York is 75°F and it's partly cloudy.", "type": "ai", "tool_calls": [{"name": "weather_check", "args": {"location": "New York"}}]},
{"content": "Can you translate that to Celsius?", "type": "human"},
{"content": "Let me convert that to Celsius for you.", "type": "ai", "tool_calls": [{"name": "temperature_conversion", "args": {"temperature_fahrenheit": 75}}]},
{"content": "75°F is approximately 23.9°C.", "type": "tool"},
{"content": "75°F is approximately 23.9°C.", "type": "ai"}
],
"reference_tool_calls": [
{"name": "weather_check", "args": {"location": "New York"}},
{"name": "temperature_conversion", "args": {"temperature_fahrenheit": 75}}
]
}
{
"tasks": {
"task1": {
"metrics": {
"tool_call_accuracy": {
"scores": {
"tool_call_accuracy": {
"value": 1.0
}
}
}
}
}
}
}
Answer Accuracy#
Answer accuracy requires judge model.
{
"type": "agentic",
"name": "my-agentic-config-answer-accuracy",
"namespace": "my-organization",
"tasks": {
"task1": {
"type": "answer_accuracy",
"params": {
"judge": {
"extra": {
"judge_sanity_check": false
},
"model": {
"api_endpoint": {
"url": "<nim_url>",
"model_id": "meta/llama-3.1-70b-instruct",
"api_key": "<OPTIONAL_API_KEY>"
},
"prompt": {
"inference_params": {
"temperature": 1,
"max_tokens": 1024,
"max_retries": 10,
"request_timeout": 10,
"stop": ["<|end_of_text|>", "<|eot|>"]
}
}
}
}
}
}
}
}
{
"type": "agentic",
"name": "my-agentic-config-answer-accuracy-reasoning",
"namespace": "my-organization",
"tasks": {
"task1": {
"type": "answer_accuracy",
"params": {
"judge": {
"extra": {
"judge_sanity_check": false
},
"model": {
"api_endpoint": {
"url": "<nim_url>",
"model_id": "nvidia/llama-3.3-nemotron-super-49b-v1",
"api_key": "<OPTIONAL_JUDGE_API_KEY>"
},
"prompt": {
"system_prompt": "'detailed thinking on'",
"reasoning_params": {
"end_token": "</think>"
},
"inference_params": {
"temperature": 0.1,
"max_tokens": 1024,
"max_retries": 10,
"request_timeout": 10
}
}
}
}
}
}
}
}
{
"user_input": "What is the capital of France?",
"response": "Paris",
"reference": "Paris"
}
{
"tasks": {
"task1": {
"metrics": {
"answer_accuracy": {
"scores": {
"answer_accuracy": {
"value": 1.0
}
}
}
}
}
}
}
LLM as a Judge Schema#
Configure a judge for the task tasks.params.judge
. The judge model configuration supports both standard and reasoning-enabled models.
Standard Judge Configuration#
{
"extra": {
"judge_sanity_check": false
},
"model": {
"api_endpoint": {
"url": "<nim_url>",
"model_id": "meta/llama-3.1-70b-instruct",
"api_key": "<OPTIONAL_API_KEY>"
},
"prompt": {
"inference_params": {
"temperature": 1,
"max_tokens": 1024,
"max_retries": 10,
"request_timeout": 10,
"stop": ["<|end_of_text|>", "<|eot|>"]
}
}
}
}
Reasoning Judge Configuration#
For reasoning-enabled models (like Nemotron series), configure the judge with reasoning parameters:
Nemotron Reasoning Models#
{
"extra": {
"judge_sanity_check": false
},
"model": {
"api_endpoint": {
"url": "<nim_url>",
"model_id": "nvidia/llama-3.3-nemotron-super-49b-v1",
"api_key": "<OPTIONAL_API_KEY>"
},
"prompt": {
"system_prompt": "'detailed thinking on'",
"reasoning_params": {
"end_token": "</think>"
},
"inference_params": {
"temperature": 0.1,
"max_tokens": 1024,
"max_retries": 10,
"request_timeout": 10
}
}
}
}
OpenAI Reasoning Models#
{
"extra": {
"judge_sanity_check": false
},
"model": {
"api_endpoint": {
"url": "<openai_url>",
"model_id": "o1-preview",
"api_key": "<OPENAI_API_KEY>",
"format": "openai"
},
"prompt": {
"reasoning_params": {
"effort": "medium"
},
"inference_params": {
"max_tokens": 1024,
"max_retries": 10,
"request_timeout": 10
}
}
}
}
Note
Reasoning Model Configuration: When using reasoning models as judge models in agentic evaluations:
Nemotron models: Use
system_prompt: "'detailed thinking on'"
andreasoning_params.end_token: "</think>"
to enable reasoning and trim reasoning traces from the output.OpenAI models: Use
reasoning_params.effort
to control reasoning depth (“low”, “medium”, or “high”).The
end_token
parameter is supported for Nemotron reasoning models when configured correctly.
Metrics#
Agentic evaluation uses RAGAS metrics to score agent outputs. RAGAS is a library for evaluating retrieval-augmented generation and agentic workflows using standardized, research-backed metrics.
Each task contains a set of metrics relevant to the Agentic evaluation, such as topic adherence, tool call accuracy, agent goal accuracy, or answer accuracy, depending on the metric selected in the job configuration.
Metric Name |
Description |
Value Range |
Notes |
---|---|---|---|
Measures how well the agent sticks to the assigned topic (F1 mode) |
0.0–1.0 |
Requires judge LLM |
|
Accuracy of tool call predictions |
0.0–1.0 |
||
Accuracy in achieving the agent’s goal with reference |
0.0–1.0 |
||
Accuracy in achieving the agent’s goal without reference |
0.0–1.0 |
||
Accuracy of the agent’s answer |
0.0–1.0 |
Limitations#
Agentic evaluation only works with
cached_outputs
targets.The judge model must be at least 70B parameters (preferably >405B), otherwise metrics evaluation will fail. Visit Troubleshooting Unsupported Judge Model for more details.
Each metric can be computed via one job, and there can only be one task per job. Different metrics can’t be computed on the same dataset/job, as all metrics require different dataset formats.