Save Configurations#
Export your Data Designer configuration to files for reuse and sharing across projects. Save your column definitions, model configurations, and inference parameters as persistent configuration files.
Save to YAML File#
YAML format provides the most readable configuration files for manual editing and version control:
from nemo_microservices.beta.data_designer import DataDesignerConfigBuilder
# Build your configuration (after adding columns, models, etc.)
config = config_builder.build()
# Save to YAML file
config.to_yaml(path="my_config.yaml")
Using Path Objects#
from pathlib import Path
# Save with custom path
config_path = "configs/my_config.yaml"
config.to_yaml(path=config_path)
Save to JSON File#
JSON format works well with programmatic workflows and API integrations:
# Save to JSON file
config.to_json(path="my_config.json")
# Save with custom path
config.to_json(path="configs/my_config.json")
Get Configuration as Dictionary#
Export your configuration as a Python dictionary for programmatic use:
# Get configuration as dictionary
config_dict = config.to_dict()
Complete Save Example#
Here’s a complete workflow showing configuration creation and saving:
import os
from pathlib import Path
from nemo_microservices.beta.data_designer import DataDesignerConfigBuilder
# Create configuration
config_builder = DataDesignerConfigBuilder(
model_configs=[
P.ModelConfig(
alias="main-model",
model=P.Model(
api_endpoint=P.ApiEndpoint(
model_id="meta/llama-3.3-70b-instruct",
url="https://integrate.api.nvidia.com/v1",
api_key="your-api-key"
)
),
inference_parameters=P.InferenceParameters(
temperature=0.90,
top_p=0.99,
max_tokens=2048,
),
),
]
)
# Add some columns to your configuration
config_builder.add_column(
C.SamplerColumn(
name="topic",
type=P.SamplerType.CATEGORY,
params=P.CategorySamplerParams(
values=["Technology", "Science", "Health"]
)
)
)
config_builder.add_column(
C.LLMTextColumn(
name="article",
prompt="Write a short article about {{ topic }}",
model_alias="main-model"
)
)
config = config_builder.build()
# Create configs directory if it doesn't exist
configs_dir = Path("configs")
configs_dir.mkdir(exist_ok=True)
# Save in multiple formats
config.to_yaml(path=configs_dir / "article_generation.yaml")
config.to_json(path=configs_dir / "article_generation.json")