nat.experimental.test_time_compute.editing.motivation_aware_summarization#
Attributes#
Classes#
A strategy that, for each incoming TTCItem, summarizes the output based on input |
Functions#
|
Module Contents#
- logger#
- class MotivationAwareSummarization( )#
Bases:
nat.experimental.test_time_compute.models.strategy_base.StrategyBase
A strategy that, for each incoming TTCItem, summarizes the output based on input and motivation.
- config#
- llm_bound = None#
- async build_components(builder: nat.builder.builder.Builder) None #
Binds each LLMRef in self.config.llms to an actual LLM client.
- supported_pipeline_types() list[nat.experimental.test_time_compute.models.stage_enums.PipelineTypeEnum] #
Return the stage types supported by this selector.
- stage_type() nat.experimental.test_time_compute.models.stage_enums.StageTypeEnum #
Return the stage type of this strategy.
- async ainvoke(
- items: list[nat.experimental.test_time_compute.models.ttc_item.TTCItem],
- original_prompt: str | None = None,
- agent_context: str | None = None,
- **kwargs,
For each TTCItem, rewrite the ‘input’ using each LLM to create a new perspective. The new TTCItems’ ‘output’ field will store the newly generated query.
- async register_multi_query_retrieval_search(
- config: nat.experimental.test_time_compute.models.editor_config.MotivationAwareSummarizationConfig,
- builder: nat.builder.builder.Builder,