nat.experimental.test_time_compute.models.search_config#
Classes#
Base configuration class for Test Time Compute (TTC) strategy. |
|
Configuration for a 'multi LLM plan generation' strategy. |
|
Configuration for the MultiQueryRetrievalSearch strategy. |
Module Contents#
- class SingleShotMultiPlanConfig(/, **data: Any)#
Bases:
nat.data_models.ttc_strategy.TTCStrategyBaseConfig
Base configuration class for Test Time Compute (TTC) strategy. This class is used to define the structure of TTC strategy configurations.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.- planning_llm: nat.data_models.component_ref.LLMRef | Any | None = None#
- class MultiLLMPlanConfig(/, **data: Any)#
Bases:
nat.data_models.ttc_strategy.TTCStrategyBaseConfig
Configuration for a ‘multi LLM plan generation’ strategy.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.- llms: list[nat.data_models.component_ref.LLMRef] = None#
- class MultiQueryRetrievalSearchConfig(/, **data: Any)#
Bases:
nat.data_models.ttc_strategy.TTCStrategyBaseConfig
Configuration for the MultiQueryRetrievalSearch strategy. This strategy generates multiple new ‘TTCItem’s per original item, each containing a differently phrased or re-focused version of the original task.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.- llms: list[nat.data_models.component_ref.LLMRef] = None#
- validate_llms(values)#