nat.profiler.parameter_optimization.pareto_visualizer#

Attributes#

Classes#

Functions#

load_trials_from_study(→ tuple[pandas.DataFrame, ...)

load_trials_from_csv(→ tuple[pandas.DataFrame, ...)

compute_pareto_optimal_mask(→ numpy.ndarray)

create_pareto_visualization(→ dict[str, ...)

Module Contents#

logger#
class ParetoVisualizer(
metric_names: list[str],
directions: list[str],
title_prefix: str = 'Optimization Results',
)#
metric_names#
directions#
title_prefix = 'Optimization Results'#
plot_pareto_front_2d(
trials_df: pandas.DataFrame,
pareto_trials_df: pandas.DataFrame | None = None,
save_path: pathlib.Path | None = None,
figsize: tuple[int, int] = (10, 8),
show_plot: bool = True,
) matplotlib.pyplot.Figure#
plot_pareto_parallel_coordinates(
trials_df: pandas.DataFrame,
pareto_trials_df: pandas.DataFrame | None = None,
save_path: pathlib.Path | None = None,
figsize: tuple[int, int] = (12, 8),
show_plot: bool = True,
) matplotlib.pyplot.Figure#
plot_pairwise_matrix(
trials_df: pandas.DataFrame,
pareto_trials_df: pandas.DataFrame | None = None,
save_path: pathlib.Path | None = None,
figsize: tuple[int, int] | None = None,
show_plot: bool = True,
) matplotlib.pyplot.Figure#
load_trials_from_study(
study: optuna.Study,
) tuple[pandas.DataFrame, pandas.DataFrame]#
load_trials_from_csv(
csv_path: pathlib.Path,
metric_names: list[str],
directions: list[str],
) tuple[pandas.DataFrame, pandas.DataFrame]#
compute_pareto_optimal_mask(
df: pandas.DataFrame,
value_cols: list[str],
directions: list[str],
) numpy.ndarray#
create_pareto_visualization(
data_source: optuna.Study | pathlib.Path | pandas.DataFrame,
metric_names: list[str],
directions: list[str],
output_dir: pathlib.Path | None = None,
title_prefix: str = 'Optimization Results',
show_plots: bool = True,
) dict[str, matplotlib.pyplot.Figure]#