nat.profiler.calc.data_models#
Classes#
Configuration parameters for linear fit and outlier detection. |
|
Parameters used for a calc runner. |
|
Sizing metrics per dataset entry item. |
|
Sizing metrics alerts. |
|
Sizing metrics for a single concurrency. |
|
Result of linear regression including slope, intercept, and quality metrics. |
|
Linear fit results for both LLM latency and workflow runtime analysis. |
|
GPU estimates. |
|
Calc runner alerts. |
|
Output of the calc runner per concurrency. |
|
Output of the calc runner. |
Module Contents#
- class FitConfig(/, **data: Any)#
Bases:
pydantic.BaseModel
Configuration parameters for linear fit and outlier detection.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.
- class CalcRunnerConfig(/, **data: Any)#
Bases:
pydantic.BaseModel
Parameters used for a calc runner.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.- config_file: pathlib.Path | None = None#
- output_dir: pathlib.Path | None = None#
- class SizingMetricPerItem(/, **data: Any)#
Bases:
pydantic.BaseModel
Sizing metrics per dataset entry item.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.
- class SizingMetricsAlerts(/, **data: Any)#
Bases:
pydantic.BaseModel
Sizing metrics alerts.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.
- class SizingMetrics(/, **data: Any)#
Bases:
pydantic.BaseModel
Sizing metrics for a single concurrency.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.- alerts: SizingMetricsAlerts = None#
- per_item_metrics: dict[Any, SizingMetricPerItem]#
- class LinearFitResult(/, **data: Any)#
Bases:
pydantic.BaseModel
Result of linear regression including slope, intercept, and quality metrics.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.
- class FitResults(/, **data: Any)#
Bases:
pydantic.BaseModel
Linear fit results for both LLM latency and workflow runtime analysis.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.- llm_latency_fit: LinearFitResult | None = None#
- wf_runtime_fit: LinearFitResult | None = None#
- class GPUEstimates(/, **data: Any)#
Bases:
pydantic.BaseModel
GPU estimates.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.
- class CalcAlerts(/, **data: Any)#
Bases:
pydantic.BaseModel
Calc runner alerts.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.
- class CalcData(/, **data: Any)#
Bases:
pydantic.BaseModel
Output of the calc runner per concurrency.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.- gpu_estimates: GPUEstimates = None#
- alerts: CalcAlerts = None#
- sizing_metrics: SizingMetrics = None#
- class CalcRunnerOutput(/, **data: Any)#
Bases:
pydantic.BaseModel
Output of the calc runner.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.- gpu_estimates: GPUEstimates = None#
- fit_results: FitResults = None#