nat.experimental.test_time_compute.search.multi_llm_planner#
Attributes#
Classes#
A planner that uses multiple LLMs to generate plans. Each LLM can generate |
Functions#
|
Register the MultiLLMPlanner strategy with the provided configuration. |
Module Contents#
- logger#
- class MultiLLMPlanner( )#
Bases:
nat.experimental.test_time_compute.models.strategy_base.StrategyBase
A planner that uses multiple LLMs to generate plans. Each LLM can generate a specified number of plans, and all plans are combined.
- config#
- llms_bound = []#
- async build_components(builder: nat.builder.builder.Builder) None #
Build the components required for this multi-LLM planner. Binds each LLMRef from the config with the selected framework wrapper (LANGCHAIN).
- supported_pipeline_types() [nat.experimental.test_time_compute.models.stage_enums.PipelineTypeEnum] #
Return the stage types supported by this selector.
- stage_type() nat.experimental.test_time_compute.models.stage_enums.StageTypeEnum #
Return the stage type of this strategy.
- async _generate_plan_for_temperature( ) nat.experimental.test_time_compute.models.ttc_item.TTCItem #
- async _generate_plans_for_llm(
- llm,
- base_prompt: str,
- async ainvoke(
- items: list[nat.experimental.test_time_compute.models.ttc_item.TTCItem],
- original_prompt: str | None = None,
- agent_context: str | None = None,
- **kwargs,
Generate a list of PlanningItems by querying each LLM in self.llms_bound. Each LLM produces ‘plans_per_llm’ plans.
- async register_multi_llm_planner(
- config: nat.experimental.test_time_compute.models.search_config.MultiLLMPlanConfig,
- builder: nat.builder.builder.Builder,
Register the MultiLLMPlanner strategy with the provided configuration.