nat.profiler.parameter_optimization.parameter_selection#
Functions#
|
Return array (n_trials × n_objectives) where all objectives are ‘smaller-is-better’. |
|
Collapse Optuna’s Pareto front ( |
Module Contents#
- _to_minimisation_matrix(
- trials: collections.abc.Sequence[optuna.trial.FrozenTrial],
- directions: collections.abc.Sequence[optuna.study.StudyDirection],
Return array (n_trials × n_objectives) where all objectives are ‘smaller-is-better’.
- pick_trial(
- study: optuna.study.Study,
- mode: str = 'harmonic',
- *,
- weights: collections.abc.Sequence[float] | None = None,
- ref_point: collections.abc.Sequence[float] | None = None,
- eps: float = 1e-12,
Collapse Optuna’s Pareto front (
study.best_trials) to a single “best compromise”.Parameters#
study : completed multi-objective Optuna study mode : {“harmonic”, “sum”, “chebyshev”, “hypervolume”} weights : per-objective weights (used only for “sum”) ref_point : reference point for hyper-volume (defaults to ones after normalisation) eps : tiny value to avoid division by zero
Returns#
optuna.trial.FrozenTrial