nat.profiler.parameter_optimization.parameter_selection#

Functions#

_to_minimisation_matrix(→ numpy.ndarray)

Return array (n_trials × n_objectives) where all objectives are ‘smaller-is-better’.

pick_trial(→ optuna.trial.FrozenTrial)

Collapse Optuna’s Pareto front (study.best_trials) to a single “best compromise”.

Module Contents#

_to_minimisation_matrix(
trials: collections.abc.Sequence[optuna.trial.FrozenTrial],
directions: collections.abc.Sequence[optuna.study.StudyDirection],
) numpy.ndarray#

Return array (n_trials × n_objectives) where all objectives are ‘smaller-is-better’.

pick_trial(
study: optuna.study.Study,
mode: str = 'harmonic',
*,
weights: collections.abc.Sequence[float] | None = None,
ref_point: collections.abc.Sequence[float] | None = None,
eps: float = 1e-12,
) optuna.trial.FrozenTrial#

Collapse Optuna’s Pareto front (study.best_trials) to a single “best compromise”.

Parameters#

study : completed multi-objective Optuna study mode : {“harmonic”, “sum”, “chebyshev”, “hypervolume”} weights : per-objective weights (used only for “sum”) ref_point : reference point for hyper-volume (defaults to ones after normalisation) eps : tiny value to avoid division by zero

Returns#

optuna.trial.FrozenTrial