nat.experimental.test_time_compute.models.selection_config#

Classes#

LLMBasedPlanSelectionConfig

Configuration for LLMBasedSelection.

LLMBasedAgentOutputSelectionConfig

Configuration for LLMBasedSelection.

LLMBasedOutputMergingConfig

Configuration for LLMBasedSelection.

ThresholdSelectionConfig

Configuration for a selection strategy that keeps only the items

BestOfNSelectionConfig

Configuration for Best of N Selection

Module Contents#

class LLMBasedPlanSelectionConfig(/, **data: Any)#

Bases: nat.data_models.ttc_strategy.TTCStrategyBaseConfig

Configuration for LLMBasedSelection.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

selection_llm: nat.data_models.component_ref.LLMRef | Any | None = None#
selection_template: str = None#
validate_strategies(values: dict[str, Any]) dict[str, Any]#

Ensure that the selection_llm is provided when using LLMBasedSelection.

class LLMBasedAgentOutputSelectionConfig(/, **data: Any)#

Bases: nat.data_models.ttc_strategy.TTCStrategyBaseConfig

Configuration for LLMBasedSelection.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

selection_llm: nat.data_models.component_ref.LLMRef | Any | None = None#
selection_template: str = None#
validate_strategies(values: dict[str, Any]) dict[str, Any]#

Ensure that the selection_llm is provided when using LLMBasedSelection.

class LLMBasedOutputMergingConfig(/, **data: Any)#

Bases: nat.data_models.ttc_strategy.TTCStrategyBaseConfig

Configuration for LLMBasedSelection.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

selection_llm: nat.data_models.component_ref.LLMRef | Any | None = None#
selection_template: str = None#
validate_strategies(values: dict[str, Any]) dict[str, Any]#

Ensure that the selection_llm is provided when using LLMBasedSelection.

class ThresholdSelectionConfig(/, **data: Any)#

Bases: nat.data_models.ttc_strategy.TTCStrategyBaseConfig

Configuration for a selection strategy that keeps only the items whose scores exceed a specified threshold.

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

threshold: float = None#
class BestOfNSelectionConfig(/, **data: Any)#

Bases: nat.data_models.ttc_strategy.TTCStrategyBaseConfig

Configuration for Best of N Selection

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.