nat.experimental.test_time_compute.models.selection_config#
Classes#
Configuration for LLMBasedSelection. |
|
Configuration for LLMBasedSelection. |
|
Configuration for LLMBasedSelection. |
|
Configuration for a selection strategy that keeps only the items |
|
Configuration for Best of N Selection |
Module Contents#
- class LLMBasedPlanSelectionConfig(/, **data: Any)#
Bases:
nat.data_models.ttc_strategy.TTCStrategyBaseConfig
Configuration for LLMBasedSelection.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.- selection_llm: nat.data_models.component_ref.LLMRef | Any | None = None#
- class LLMBasedAgentOutputSelectionConfig(/, **data: Any)#
Bases:
nat.data_models.ttc_strategy.TTCStrategyBaseConfig
Configuration for LLMBasedSelection.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.- selection_llm: nat.data_models.component_ref.LLMRef | Any | None = None#
- class LLMBasedOutputMergingConfig(/, **data: Any)#
Bases:
nat.data_models.ttc_strategy.TTCStrategyBaseConfig
Configuration for LLMBasedSelection.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.- selection_llm: nat.data_models.component_ref.LLMRef | Any | None = None#
- class ThresholdSelectionConfig(/, **data: Any)#
Bases:
nat.data_models.ttc_strategy.TTCStrategyBaseConfig
Configuration for a selection strategy that keeps only the items whose scores exceed a specified threshold.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.
- class BestOfNSelectionConfig(/, **data: Any)#
Bases:
nat.data_models.ttc_strategy.TTCStrategyBaseConfig
Configuration for Best of N Selection
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.