nat.builder.child_builder#

Classes#

ChildBuilder

Helper class that provides a standard way to create an ABC using

Module Contents#

class ChildBuilder(workflow_builder: nat.builder.builder.Builder)#

Bases: nat.builder.builder.Builder

Helper class that provides a standard way to create an ABC using inheritance.

_workflow_builder#
_dependencies#
property sync_builder: nat.builder.sync_builder.SyncBuilder#

Get the synchronous version of the builder.

Returns:

The SyncBuilder object (synchronous wrapper).

property dependencies: nat.data_models.function_dependencies.FunctionDependencies#
async add_function(
name: str,
config: nat.data_models.function.FunctionBaseConfig,
) nat.builder.function.Function#

Add a function to the builder.

Args:

name: The name or reference for the function config: The configuration for the function

Returns:

The built function instance

async add_function_group(
name: str,
config: nat.data_models.function.FunctionGroupBaseConfig,
) nat.builder.function.FunctionGroup#

Add a function group to the builder.

Args:

name: The name or reference for the function group config: The configuration for the function group

Returns:

The built function group instance

async get_function(name: str) nat.builder.function.Function#

Get a function by name.

Args:

name: The name or reference of the function

Returns:

The built function instance

async get_function_group(name: str) nat.builder.function.FunctionGroup#

Get a function group by name.

Args:

name: The name or reference of the function group

Returns:

The built function group instance

get_function_config(
name: str,
) nat.data_models.function.FunctionBaseConfig#

Get the configuration for a function.

Args:

name: The name or reference of the function

Returns:

The configuration for the function

get_function_group_config(
name: str,
) nat.data_models.function.FunctionGroupBaseConfig#

Get the configuration for a function group.

Args:

name: The name or reference of the function group

Returns:

The configuration for the function group

async set_workflow(
config: nat.data_models.function.FunctionBaseConfig,
) nat.builder.function.Function#

Set the workflow function.

Args:

config: The configuration for the workflow function

Returns:

The built workflow function instance

get_workflow() nat.builder.function.Function#

Get the workflow function.

Returns:

The workflow function instance

get_workflow_config() nat.data_models.function.FunctionBaseConfig#

Get the configuration for the workflow.

Returns:

The configuration for the workflow function

async get_tools(
tool_names: collections.abc.Sequence[str | nat.data_models.component_ref.FunctionRef | nat.data_models.component_ref.FunctionGroupRef],
wrapper_type: nat.builder.framework_enum.LLMFrameworkEnum | str,
) list[Any]#

Get multiple tools by name wrapped in the specified framework type.

Args:

tool_names: The names or references of the tools (functions or function groups) wrapper_type: The LLM framework type to wrap the tools in

Returns:

List of tools wrapped in the specified framework type

async get_tool(
fn_name: str | nat.data_models.component_ref.FunctionRef,
wrapper_type: nat.builder.framework_enum.LLMFrameworkEnum | str,
)#

Get a tool by name wrapped in the specified framework type.

Args:

fn_name: The name or reference of the tool (function) wrapper_type: The LLM framework type to wrap the tool in

Returns:

The tool wrapped in the specified framework type

async add_llm(name: str, config: nat.data_models.llm.LLMBaseConfig) None#

Add an LLM to the builder.

Args:

name: The name or reference for the LLM config: The configuration for the LLM

Returns:

The built LLM instance

async add_auth_provider(
name: str,
config: nat.data_models.authentication.AuthProviderBaseConfig,
) nat.authentication.interfaces.AuthProviderBase#

Add an authentication provider to the builder.

Args:

name: The name or reference for the authentication provider config: The configuration for the authentication provider

Returns:

The built authentication provider instance

async get_auth_provider(auth_provider_name: str)#

Get an authentication provider by name.

Args:

auth_provider_name: The name or reference of the authentication provider

Returns:

The authentication provider instance

async get_llm(
llm_name: str,
wrapper_type: nat.builder.framework_enum.LLMFrameworkEnum | str,
) Any#

Get an LLM by name wrapped in the specified framework type.

Args:

llm_name: The name or reference of the LLM wrapper_type: The LLM framework type to wrap the LLM in

Returns:

The LLM wrapped in the specified framework type

get_llm_config(llm_name: str) nat.data_models.llm.LLMBaseConfig#

Get the configuration for an LLM.

Args:

llm_name: The name or reference of the LLM

Returns:

The configuration for the LLM

async add_embedder(
name: str,
config: nat.data_models.embedder.EmbedderBaseConfig,
) None#

Add an embedder to the builder.

Args:

name: The name or reference for the embedder config: The configuration for the embedder

async get_embedder(
embedder_name: str,
wrapper_type: nat.builder.framework_enum.LLMFrameworkEnum | str,
) Any#

Get an embedder by name wrapped in the specified framework type.

Args:

embedder_name: The name or reference of the embedder wrapper_type: The LLM framework type to wrap the embedder in

Returns:

The embedder wrapped in the specified framework type

get_embedder_config(
embedder_name: str,
) nat.data_models.embedder.EmbedderBaseConfig#

Get the configuration for an embedder.

Args:

embedder_name: The name or reference of the embedder

Returns:

The configuration for the embedder

async add_memory_client(
name: str,
config: nat.data_models.memory.MemoryBaseConfig,
) nat.memory.interfaces.MemoryEditor#

Add a memory client to the builder.

Args:

name: The name or reference for the memory client config: The configuration for the memory client

Returns:

The built memory client instance

async get_memory_client(
memory_name: str,
) nat.memory.interfaces.MemoryEditor#

Return the instantiated memory client for the given name.

get_memory_client_config(
memory_name: str,
) nat.data_models.memory.MemoryBaseConfig#

Get the configuration for a memory client.

Args:

memory_name: The name or reference of the memory client

Returns:

The configuration for the memory client

async add_object_store(
name: str,
config: nat.data_models.object_store.ObjectStoreBaseConfig,
)#

Add an object store to the builder.

Args:

name: The name or reference for the object store config: The configuration for the object store

Returns:

The built object store instance

async get_object_store_client(
object_store_name: str,
) nat.object_store.interfaces.ObjectStore#

Return the instantiated object store client for the given name.

get_object_store_config(
object_store_name: str,
) nat.data_models.object_store.ObjectStoreBaseConfig#

Get the configuration for an object store.

Args:

object_store_name: The name or reference of the object store

Returns:

The configuration for the object store

async add_trainer(
name: str | nat.data_models.component_ref.TrainerRef,
config: nat.data_models.finetuning.TrainerConfig,
) nat.finetuning.interfaces.finetuning_runner.Trainer#

Add a trainer to the builder.

Args:

name: The name or reference for the trainer config: The configuration for the trainer

Returns:

The built trainer instance

async add_trainer_adapter(
name: str | nat.data_models.component_ref.TrainerAdapterRef,
config: nat.data_models.finetuning.TrainerAdapterConfig,
) nat.finetuning.interfaces.trainer_adapter.TrainerAdapter#

Add a trainer adapter to the builder.

Args:

name: The name or reference for the trainer adapter config: The configuration for the trainer adapter

Returns:

The built trainer adapter instance

async add_trajectory_builder(
name: str | nat.data_models.component_ref.TrajectoryBuilderRef,
config: nat.data_models.finetuning.TrajectoryBuilderConfig,
) nat.finetuning.interfaces.trajectory_builder.TrajectoryBuilder#

Add a trajectory builder to the builder.

Args:

name: The name or reference for the trajectory builder config: The configuration for the trajectory builder

Returns:

The built trajectory builder instance

async get_trainer(
trainer_name: str | nat.data_models.component_ref.TrainerRef,
trajectory_builder: nat.finetuning.interfaces.trajectory_builder.TrajectoryBuilder,
trainer_adapter: nat.finetuning.interfaces.trainer_adapter.TrainerAdapter,
) nat.finetuning.interfaces.finetuning_runner.Trainer#

Get a trainer by name with the specified trajectory builder and trainer adapter.

Args:

trainer_name: The name or reference of the trainer trajectory_builder: The trajectory builder instance trainer_adapter: The trainer adapter instance

Returns:

The trainer instance

async get_trainer_config(
trainer_name: str | nat.data_models.component_ref.TrainerRef,
) nat.data_models.finetuning.TrainerConfig#

Get the configuration for a trainer.

Args:

trainer_name: The name or reference of the trainer

Returns:

The configuration for the trainer

async get_trainer_adapter_config(
trainer_adapter_name: str | nat.data_models.component_ref.TrainerAdapterRef,
) nat.data_models.finetuning.TrainerAdapterConfig#

Get the configuration for a trainer adapter.

Args:

trainer_adapter_name: The name or reference of the trainer adapter

Returns:

The configuration for the trainer adapter

async get_trajectory_builder_config(
trajectory_builder_name: str | nat.data_models.component_ref.TrajectoryBuilderRef,
) nat.data_models.finetuning.TrajectoryBuilderConfig#

Get the configuration for a trajectory builder.

Args:

trajectory_builder_name: The name or reference of the trajectory builder

Returns:

The configuration for the trajectory builder

async get_trainer_adapter(
trainer_adapter_name: str | nat.data_models.component_ref.TrainerAdapterRef,
) nat.finetuning.interfaces.trainer_adapter.TrainerAdapter#

Get a trainer adapter by name.

Args:

trainer_adapter_name: The name or reference of the trainer adapter

Returns:

The trainer adapter instance

async get_trajectory_builder(
trajectory_builder_name: str | nat.data_models.component_ref.TrajectoryBuilderRef,
) nat.finetuning.interfaces.trajectory_builder.TrajectoryBuilder#

Get a trajectory builder by name.

Args:

trajectory_builder_name: The name or reference of the trajectory builder

Returns:

The trajectory builder instance

async add_ttc_strategy(
name: str,
config: nat.data_models.ttc_strategy.TTCStrategyBaseConfig,
) None#

Add a test-time compute strategy to the builder.

Args:

name: The name or reference for the TTC strategy config: The configuration for the TTC strategy

async get_ttc_strategy(
strategy_name: str | nat.data_models.component_ref.TTCStrategyRef,
pipeline_type: nat.experimental.test_time_compute.models.stage_enums.PipelineTypeEnum,
stage_type: nat.experimental.test_time_compute.models.stage_enums.StageTypeEnum,
) nat.experimental.test_time_compute.models.strategy_base.StrategyBase#

Get a test-time compute strategy by name.

Args:

strategy_name: The name or reference of the TTC strategy pipeline_type: The pipeline type for the strategy stage_type: The stage type for the strategy

Returns:

The TTC strategy instance

async get_ttc_strategy_config(
strategy_name: str | nat.data_models.component_ref.TTCStrategyRef,
pipeline_type: nat.experimental.test_time_compute.models.stage_enums.PipelineTypeEnum,
stage_type: nat.experimental.test_time_compute.models.stage_enums.StageTypeEnum,
) nat.data_models.ttc_strategy.TTCStrategyBaseConfig#

Get the configuration for a test-time compute strategy.

Args:

strategy_name: The name or reference of the TTC strategy pipeline_type: The pipeline type for the strategy stage_type: The stage type for the strategy

Returns:

The configuration for the TTC strategy

async add_retriever(
name: str,
config: nat.data_models.retriever.RetrieverBaseConfig,
) None#

Add a retriever to the builder.

Args:

name: The name or reference for the retriever config: The configuration for the retriever

async get_retriever(
retriever_name: str,
wrapper_type: nat.builder.framework_enum.LLMFrameworkEnum | str | None = None,
) nat.retriever.interface.Retriever#

Get a retriever by name.

Args:

retriever_name: The name or reference of the retriever wrapper_type: Optional LLM framework type to wrap the retriever in

Returns:

The retriever instance, optionally wrapped in the specified framework type

async get_retriever_config(
retriever_name: str,
) nat.data_models.retriever.RetrieverBaseConfig#

Get the configuration for a retriever.

Args:

retriever_name: The name or reference of the retriever

Returns:

The configuration for the retriever

get_user_manager() nat.builder.builder.UserManagerHolder#

Get the user manager holder.

Returns:

The user manager holder instance

get_function_dependencies(
fn_name: str,
) nat.data_models.function_dependencies.FunctionDependencies#

Get the dependencies for a function.

Args:

fn_name: The name of the function

Returns:

The function dependencies

get_function_group_dependencies(
fn_name: str,
) nat.data_models.function_dependencies.FunctionDependencies#

Get the dependencies for a function group.

Args:

fn_name: The name of the function group

Returns:

The function group dependencies

async add_middleware(
name: str | nat.data_models.component_ref.MiddlewareRef,
config: nat.data_models.middleware.MiddlewareBaseConfig,
) nat.middleware.middleware.Middleware#

Add middleware to the builder.

async get_middleware(
middleware_name: str | nat.data_models.component_ref.MiddlewareRef,
) nat.middleware.middleware.Middleware#

Get built middleware by name.

get_middleware_config(
middleware_name: str | nat.data_models.component_ref.MiddlewareRef,
) nat.data_models.middleware.MiddlewareBaseConfig#

Get the configuration for middleware.

static use(
config: nat.data_models.common.TypedBaseModel,
builder: nat.builder.builder.Builder,
) collections.abc.Generator[ChildBuilder, None, None]#

Context manager for temporarily setting the Builder object.

Parameters#

configTypedBaseModel

The configuration to use within the context. Note: Not used for now, but required by the interface and will be used in the future.

builderBuilder

The Builder instance to use within the context.

Yields#

ChildBuilder

The Builder instance that was set.

Examples#

>>> with ChildBuilder.use(config, my_builder) as builder:
...     # builder is active in this context
...     assert Builder.current() == builder
>>> # Original builder is restored here