NVIDIA TAO Toolkit v4.0.1

Segformer with TAO Deploy

Segformer etlt file generated from tao export is taken as an input to tao-deploy to generate optimized TensorRT engine. For 4.0.0, we do not support Int8 precision for Segformer.

Same spec file can be used as the tao segformer export command.

trt_config

The trt_config parameter provides options related to TensorRT generation.

Copy
Copied!
            

trt_config: data_type: FP32 workspace_size: 1024 min_batch_size: 1 opt_batch_size: 1 max_batch_size: 1

Parameter

Datatype

Default

Description

Supported Values

data_type

string

FP32

The precision to be used for the TensorRT engine

FP32/FP16

workspace_size

unsigned int

1024

The maximum workspace size for the TensorRT engine

>1024

min_batch_size

unsigned int

1

The minimum batch size used for optimization profile shape

>0

opt_batch_size

unsigned int

1

The optimal batch size used for optimization profile shape

>0

max_batch_size

unsigned int

1

The maximum batch size used for optimization profile shape

>0

Use the following command to run Segformer engine generation:

Copy
Copied!
            

tao-deploy segformer gen_trt_engine -e /path/to/spec.yaml \ encryption_key=<key> \ output_file=/path/to/etlt/file \ trt_engine=/path/to/engine/file \ trt_config.data_type=<data_type>


Required Arguments

  • -e, --experiment_spec: The experiment spec file to set up the TensorRT engine generation. This should be the same as the export specification file.

  • -k, --key: A user-specific encoding key to load a .etlt model.

  • output_file: The .etlt model to be converted.

  • trt_engine: The path where the generated engine will be stored.

  • data_type: Segformer only supports FP32 and FP16.

Sample Usage

Here’s an example of using the gen_trt_engine command to generate FP16 TensorRT engine:

Copy
Copied!
            

tao-deploy segformer gen_trt_engine -e $DEFAULT_SPEC encryption_key=$YOUR_KEY \ model_path=$ETLT_FILE \ trt_engine=$ENGINE_FILE \ trt_config.data_type=FP16


Same spec file as TAO evaluation spec file. Sample spec file:

Copy
Copied!
            

exp_config: gpu_ids: - 0 num_gpus: 4 manual_seed: 49 distributed: True model_config: pretrained: null backbone: type: "mit_b1" dataset_config: img_norm_cfg: mean: - 127.5 - 127.5 - 127.5 std: - 127.5 - 127.5 - 127.5 test_pipeline: multi_scale: - 2048 - 512 input_type: "grayscale" data_root: /tlt-pytorch test_img_dir: /data/images/val test_ann_dir: /data/masks/val palette: - seg_class: foreground rgb: - 0 - 0 - 0 label_id: 0 mapping_class: foreground - seg_class: background rgb: - 255 - 255 - 255 label_id: 1 mapping_class: background batch_size_per_gpu: 1 workers_per_gpu: 1

Use the following command to run Segformer engine evaluation:

Copy
Copied!
            

tao-deploy segformer evaluate -e /path/to/spec.yaml \ model_path=/path/to/engine/file \ output_dir=/path/to/outputs

Required Arguments

  • -e, --experiment_spec: The experiment spec file for evaluation. This should be the same as the tao evaluate specification file.

  • model_path: The engine file to run evaluation.

  • output_dir: The directory where evaluation results will be stored.

Sample Usage

Here’s an example of using the evaluate command to run evaluation with the TensorRT engine:

Copy
Copied!
            

tao-deploy segformer evaluate -e $DEFAULT_SPEC model_path=$ENGINE_FILE \ output_dir=$RESULTS_DIR


Same spec file as TAO inference spec file. Sample spec file:

Copy
Copied!
            

exp_config: gpu_ids: - 0 num_gpus: 4 manual_seed: 49 distributed: True model_config: pretrained: null backbone: type: "mit_b1" dataset_config: img_norm_cfg: mean: - 127.5 - 127.5 - 127.5 std: - 127.5 - 127.5 - 127.5 test_pipeline: multi_scale: - 2048 - 512 input_type: "grayscale" data_root: /tlt-pytorch test_img_dir: /data/images/val test_ann_dir: /data/masks/val palette: - seg_class: foreground rgb: - 0 - 0 - 0 label_id: 0 mapping_class: foreground - seg_class: background rgb: - 255 - 255 - 255 label_id: 1 mapping_class: background samples_per_gpu: 1 workers_per_gpu: 1

Use the following command to run Segformer engine inference:

Copy
Copied!
            

tao-deploy segformer inference -e /path/to/spec.yaml \ model_path=/path/to/engine/file \ output_dir=/path/to/outputs

Required Arguments

  • -e, --experiment_spec: The experiment spec file for inference. This should be the same as the tao inference specification file.

  • model_path: The engine file to run inference.

  • output_dir: The directory where inference results will be stored.

Sample Usage

Here’s an example of using the inference command to run inference with the TensorRT engine:

Copy
Copied!
            

tao-deploy segformer inference -e $DEFAULT_SPEC model_path=$ENGINE_FILE \ output_dir=$RESULTS_DIR

The mask overlaid visualization will be stored under $RESULTS_DIR/vis_overlay and raw predictions in mask format will be stored under $RESULTS_DIR/mask_labels.

© Copyright 2023, NVIDIA.. Last updated on Aug 2, 2023.