NVIDIA TAO Toolkit v4.0.1
NVIDIA TAO Release 4.0.1

SiameseOI with TAO Deploy

To generate an optimized TensorRT engine, a SiameseOI .etlt or .onnx file, which is first generated using tao export, is taken as an input to tao deploy. For more information about training a SiameseOI model, refer to the SiameseOI training documentation.

gen_trt_engine

The gen_trt_engine section in the experiment specification file provides options for generating a TensorRT engine from an .etlt or .onnx file. The following is an example configuration:

Copy
Copied!
            

gen_trt_engine: results_dir: "${results_dir}/gen_trt_engine" onnx_file: "${results_dir}/export/oi_model.onnx" trt_engine: "${results_dir}/gen_trt_engine/oi_model.trt.v100" input_channel: 3 input_width: 400 input_height: 100 tensorrt: data_type: fp32 workspace_size: int = 1024 min_batch_size: int = 1 opt_batch_size: int = 1 max_batch_size: int = 1

Parameter

Datatype

Default

Description

Supported Values

results_dir

string

–

The path to the results directory

–

onnx_file

string

–

The path to the exported ETLT or ONNX model

–

trt_engine

string

–

The absolute path to the generated TensorRT engine

–

input_channel

unsigned int

3

The input channel size. Only a value of 3 is supported.

3

input_width

unsigned int

400

The input width

>0

input_height

unsigned int

100

The input height

>0

batch_size

unsigned int

-1

The batch size of the ONNX model

>=-1

tensorrt

The tensorrt parameter defines TensorRT engine generation.

Parameter

Datatype

Default

Description

Supported Values

data_type

string

fp32

The precision to be used for the TensorRT engine

fp32/fp16/int8

workspace_size

unsigned int

1024

The maximum workspace size for the TensorRT engine

>1024

min_batch_size

unsigned int

1

The minimum batch size used for the optimization profile shape

>0

opt_batch_size

unsigned int

1

The optimal batch size used for the optimization profile shape

>0

max_batch_size

unsigned int

1

The maximum batch size used for the optimization profile shape

>0

Use the following command to run SiameseOI engine generation:

Copy
Copied!
            

tao deploy optical_inspection gen_trt_engine -e /path/to/spec.yaml \ -r /path/to/etlt/file \ gen_trt_engine.onnx_file=/path/to/onnx/file \ gen_trt_engine.trt_engine=/path/to/engine/file \ gen_trt_engine.tensorrt.data_type=<data_type>

Required Arguments

  • -e, --experiment_spec_file: The path to the experiment spec file

  • results_dir: The global results directory. The engine generation log will be saved in the results_dir.

  • gen_trt_engine.onnx_file: The .onnx model to be converted

  • gen_trt_engine.trt_engine: The path where the generated engine will be stored

  • gen_trt_engine.tensorrt.data_type: The precision to be exported

Sample Usage

Here’s an example of using the gen_trt_engine command to generate an FP16 TensorRT engine:

Copy
Copied!
            

tao deploy optical_inspection gen_trt_engine -e $DEFAULT_SPEC -r $RESULTS_DIR gen_trt_engine.onnx_file=$ONNX_FILE \ gen_trt_engine.trt_engine=$ENGINE_FILE \ gen_trt_engine.tensorrt.data_type=FP16


You can reuse the spec file that was specified for TAO inference. The following is an example inference spec:

Copy
Copied!
            

inference: gpu_id: 0 trt_engine: /path/to/engine/file results_dir: "${results_dir}/inference"

Use the following command to run SiameseOI engine inference:

Copy
Copied!
            

tao deploy optical_inspection inference -e /path/to/spec.yaml \ -r $RESULTS_DIR \

Required Arguments

  • -e, --experiment_spec_file: The path to the experiment spec file

  • results_dir: The global results directory. The engine generation log will be saved in the results_dir.

Sample Usage

Here’s an example of using the inference command to run inference with the TensorRT engine:

Copy
Copied!
            

tao deploy optical_inspection inference -e $DEFAULT_SPEC -r $RESULTS_DIR


© Copyright 2023, NVIDIA.. Last updated on Jul 27, 2023.