Release 21.04
The container image for NVIDIA Optimized Deep Learning Framework, powered by Apache MXNet, release 21.04, is available on NGC.
Contents of the Optimized Deep Learning Framework container
This container image contains the complete source of the NVIDIA Optimized Deep Learning Framework, which is based upon recently released Apache MXNet version 1.8.0. It is pre-built and installed to the Python path. The container also includes the following:
- Ubuntu 20.04 including Python 3.8
- NVIDIA CUDA 11.3.0
- cuBLAS 11.5.1.101
- NVIDIA cuDNN 8.2.0.41
- NVIDIA NCCL 2.9.6 (optimized for NVLink™ )
- Amazon Labs Sockeye sequence-to-sequence framework 2.2.3 (for machine translation)
- Horovod 0.21.2
- rdma-core 32.1
- OpenMPI 4.1.1rc1
- OpenUCX 1.10.0
- GDRCopy 2.2
- NVIDIA HPC-X 2.8.2rc3
- Nsight Compute 2021.1.0.18
- Nsight Systems 2021.1.3.14
- TensorRT 7.2.3.4
- GluonCV Toolkit 0.7
- GluonNLP Toolkit 0.8.1
- DALI 1.0.0
- Tensor Core optimized example:
- Jupyter and JupyterLab:
Driver Requirements
Release 21.04 is based on NVIDIA CUDA 11.3.0, which requires NVIDIA Driver release 465.19.01 or later. However, if you are running on Data Center GPUs (formerly Tesla), for example, T4, you may use NVIDIA driver release 418.40 (or later R418), 440.33 (or later R440), 450.51 (or later R450), or 460.27 (or later R460). The CUDA driver's compatibility package only supports particular drivers. For a complete list of supported drivers, see the CUDA Application Compatibility topic. For more information, see CUDA Compatibility and Upgrades and NVIDIA CUDA and Drivers Support.
GPU Requirements
Release 21.04 supports CUDA compute capability 6.0 and higher. This corresponds to GPUs in the NVIDIA Pascal, Volta, Turing, and Ampere Architecture GPU families. Specifically, for a list of GPUs that this compute capability corresponds to, see CUDA GPUs. For additional support details, see Deep Learning Frameworks Support Matrix.
Key Features and Enhancements
This Optimized Deep Learning Framework release includes the following key features and enhancements.
- NVIDIA Optimized Deep Learning Framework, powered by Apache MXNet container image version 21.04 is based on 1.8.0. Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF).
- An option was added to use the new execution engine (enabled by setting the environment variables MXNET_ASYNC_GPU_ENGINE and HOROVOD_ENABLE_ASYNC_COMPLETION to 1) which potentially improves the execution speed. The improvement is especially visible for the imperative models as well as large scale training of models using Horovod.
- Ubuntu 20.04 with March 2021 updates
Announcements
- Deep learning framework containers 19.11 and later include experimental support for Singularity v3.0.
NVIDIA Optimized Deep Learning Framework Container Versions
The following table shows what versions of Ubuntu, CUDA, Apache MXNet, and TensorRT are supported in each of the NVIDIA containers for the Optimized Deep Learning Framework. For older container versions, refer to the Frameworks Support Matrix.Tensor Core Examples
The tensor core examples provided in GitHub and NVIDIA GPU Cloud (NGC) focus on achieving the best performance and convergence from NVIDIA Volta tensor cores by using the latest deep learning example networks and model scripts for training. Each example model trains with mixed precision Tensor Cores on Volta and Turing, therefore you can get results much faster than training without tensor cores. This model is tested against each NGC monthly container release to ensure consistent accuracy and performance over time. This container includes the following tensor core examples.
- The ResNet50 v1.5 model is a slightly modified version of the original ResNet50 v1 model that trains to a greater accuracy. This model script is available on GitHub as well as NVIDIA GPU Cloud (NGC).
Automatic Mixed Precision (AMP)
Training deep learning networks is a very computationally intensive task. Novel model architectures tend to have an increasing number of layers and parameters, which slows down training. Fortunately, new generations of training hardware as well as software optimizations make training these new models a feasible task.
Most of the hardware and software training optimization opportunities involve exploiting lower precision like FP16 in order to utilize the Tensor Cores available on new Volta and Turing GPUs. While training in FP16 showed great success in image classification tasks, other more complicated neural networks typically stayed in FP32 due to difficulties in applying the FP16 training guidelines that are needed to ensure proper model training.
That is where AMP (Automatic Mixed Precision) comes into play—it automatically applies the guidelines of FP16 training, using FP16 precision where it provides the most benefit, while conservatively keeping in full FP32 precision operations unsafe to do in FP16.
The NVIDIA Optimized Deep Learning Framework, powered by Apache MXNet AMP tutorial, located in /opt/mxnet/nvidia-examples/AMP/AMP_tutorial.md
inside this container, shows how to get started with mixed precision training using AMP for Apache MXNet, using by example the SSD network from GluonCV.
For more information about AMP, see the Training With Mixed Precision Guide.
Known Issues
- The default setting of the environment variable
MXNET_GPU_COPY_NTHREADS=1
in the container may not be optimal for all networks. Networks with a high ratio of parameters and computation, like AlexNet, may achieve greater multi-GPU training speeds with the settingMXNET_GPU_COPY_NTHREADS=2
. Users are encouraged to try this setting for their own use case.